博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
python-周考2
阅读量:5306 次
发布时间:2019-06-14

本文共 9785 字,大约阅读时间需要 32 分钟。

考试范围:1.Python基础2.数据类型3.流程控制4.⽂件处理5.函数6.⾯向对象##############1.定义⼀个变量有三个特性,分别为? 等号⽐较的是什么?is⽐较的是什么?2.使⽤链式赋值的⽅式将10赋值给变量x、y、z3.    有⼀个⼯资列表[3.1,2.1,4.3,2.2,1.3,9.3],请取出前两个⽉的⼯资,分别赋值给两个变量名,⽤⼀⾏代码实现4.可变的数据类型有哪些,不可变的数据类型有哪些5.容器类型有?序列类型有?6.请说明python2与python3中的默认编码是什么?7.如何保证程序不出现乱码问题?8.unicode,utf-8,gbk,ascii⽤个⼏个字节表⽰英⽂,⽤⼏个字节表⽰中⽂#-*- coding:utf-8-*- 的作⽤是什么?9.在python3中的str是什么编码的,如何把python3中的str转成utf-8格式的bytes10.在python3中如何把utf-8格式的bytes解码成str11.⽂本处理r和rb的区别是什么?解释⼀下以下三个参数的分别作⽤open(f_name,’r’,encoding="utf-8")12.什么是名称空间?名称空间的加载顺序是?查找名字的顺序是?13.下述结果为?def f1(): x=1def f2():def f3():print(x) return f3return f2() func=f1()def foo(): x=1000func()foo()14.什么是可迭代对象,什么是迭代器对象?15.迭代器对象有什么有点16.简述for循环的原理17.简述⾯向过程编程18.⽐较两个值得⼤⼩,获得较⼤的⼀个值,⽤⼀⾏代码实现19.使⽤列表⽣成式或⽣成器表达式解决下列问题1、将names=[‘egon’,'alex_sb','wupeiqi','yuanhao']中的名字全部变⼤写2、将names=[‘egon’,’alex_sb’,'wupeiqi','yuanhao']中以sb结尾的名字过滤掉,然后保存剩下的名字长度3、求⽂件a.txt中最长的⾏的长度(长度按字符个数算,需要使⽤max函数4、求⽂件a.txt中总共包含的字符个数?思考为何在第⼀次之后的n次sum求和得到的结果为0?(需要使⽤sum函数)5、思考with open('a.txt') as f: g=(len(line) for line in f)print(sum(g)) #为何报错?6、⽂件shopping.txt内容如下mac,20000,3lenovo,3000,10 tesla,1000000,10 chicken,200,1求总共花了多少钱?打印出所有商品的信息,格式为[{
'name':'xxx','price':333,'count':3},...] 求单价⼤于10000的商品信息,格式同上20.有⼀个存放员⼯名与其⽉薪的字典如下salaries={'egon':3000, 'alex':100000000,'wupeiqi':10000, 'yuanhao':2000}请⽤⼀⾏代码实现1、求薪资最⾼的那名员⼯姓名2、将字典映射成⼀个列表,[(‘egon', 36000), ('alex', 1200000000), ('wupeiqi',120000), ('yuanhao', 24000)],列表内每⼀个元素是员⼯姓名、员⼯的年薪3、过滤出薪资⼤于10000的员⼯姓名21.简述yield与return的相同点与不同点22.简述⾯向对象与⾯向过程的以及区别?23.定义OldboyTeacher、OldboyStudent、OldboyPeople、Course、Classes类,并基于继承与组合减少代码冗余24.简述python继承的实现原理,什么是新式类?什么是经典类?以及新式类与经典类在属性查找上的区别?25.定义⼀个People类,将⼈的bmi指数伪装成⼀个数据属性26.定义⼀个People类,每个⼈有属性姓名、性别,定义打印对象的格式为[名字: 年龄]27.简述多态以及鸭⼦类型?28.什么是反射,如何实现反射?29.⾃定义元类控制类名⾸字母必须⼤写30.⾃定义元类来控制类产⽣对象的属性全部加上 开头,变为隐藏的属性
试题

 

1变量名,等号,变量值id,type,value等号比较的是valueis比较的是id,是否是同一内存地址2x=y=z=103x,y,*_=[3.1,2.1,4.3,2.2,1.3,9.3]4 int float str list tuple dict setlist dict setint float str tuple5 int float str list tuple dict setlist tuple dict setstr list tuple 6python2 asciipython3 utf-87怎么存 怎么取8 unicode 2 2  utf-8   1 3gbk     1 2ascii   1 无coding:utf-8,来决定以什么编码格式来读入内存9unicode encode10decode11文本模式读  bytes模式读文件 读 以utf-8解码到内存12存放变量名与值内存地址关系的地方内置---全局---局部局部---全局---内置13114可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,可迭代对象执行obj.__iter__()得到的结果就是迭代器对象而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象15 对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器16#1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic#2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码#3: 重复过程2,直到捕捉到异常StopIteration,结束循环17面向过程的程序设计:核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么......面向过程的设计就好比精心设计好一条流水线,是一种机械式的思维方式。优点是:复杂度的问题流程化,进而简单化(一个复杂的问题,分成一个个小的步骤去实现,实现小的步骤将会非常简单)缺点是:一套流水线或者流程就是用来解决一个问题,生产汽水的流水线无法生产汽车,即便是能,也得是大改,改一个组件,牵一发而动全身。应用场景:一旦完成基本很少改变的场景,著名的例子有Linux內核,git,以及Apache HTTP Server等。18res = x if x > y else y191names=[name.upper() for name in names]2names=[len(name) for name in names if not name.endswith('sb')]3with open('settings.py',encoding='utf-8') as f:    print(max(len(line) for line in f))4,5with open('settings.py',encoding='utf-8') as f:    print(sum(len(line) for line in f))生成器就是迭代器  惰性计算,节省内存  一次性的,只能往后走,不能往前退#优点:  - 提供一种统一的、不依赖于索引的迭代方式  - 惰性计算,节省内存#缺点:  - 无法获取长度(只有在next完毕才知道到底有几个值)  - 一次性的,只能往后走,不能往前退6with open('aa',encoding='utf-8') as f:     info_list = [line.strip().split(',') for line in f] #列表生成式    res=sum(float(price)*int(count) for _,price,count in info_list) #解压缩+sum迭代函数    print(res)with open('aa',encoding='utf-8') as f:    info = [{        'name':line.strip().split(',')[0],        'price':float(line.strip().split(',')[1]),        'count':int(line.strip().split(',')[2])            } for line in f]  #列表生成式    print(info)with open('aa',encoding='utf-8') as f:    info = [{        'name':line.strip().split(',')[0],        'price':float(line.strip().split(',')[1]),        'count':int(line.strip().split(',')[2])            } for line in f if float(line.strip().split(',')[1]) > 10000] #列表生成式加了一层判断    print(info)201 #max+匿名函数print(max(salaries,key=lambda k:salaries[k]))2 #map+匿名函数print(list(map(lambda k:(k,salaries[k]*12),salaries)))3 #filter+匿名函数print(tuple(filter(lambda k:salaries[k] > 10000,salaries)))21 生成器yield  VS return相同点:都是用在函数内,都可以返回值,没有类型限制,没有个数限制不同点:return只能返回一次值,yield可以返回多次值22面向过程的程序设计:核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么......面向过程的设计就好比精心设计好一条流水线,是一种机械式的思维方式。优点是:复杂度的问题流程化,进而简单化(一个复杂的问题,分成一个个小的步骤去实现,实现小的步骤将会非常简单)缺点是:一套流水线或者流程就是用来解决一个问题,生产汽水的流水线无法生产汽车,即便是能,也得是大改,改一个组件,牵一发而动全身。应用场景:一旦完成基本很少改变的场景,著名的例子有Linux內核,git,以及Apache HTTP Server等。面向对象的程序设计:核心是对象二字,对象是特征与技能的结合体,基于面向对象设计程序就好比在创造一个世界,你就是这个世界的上帝,存在的皆为对象,不存在的也可以创造出来,与面向过程机械式的思维方式形成鲜明对比,面向对象更加注重对现实世界的模拟,是一种“上帝式”的思维方式。优点是:解决了程序的扩展性。对某一个对象单独修改,会立刻反映到整个体系中,如对游戏中一个人物参数的特征和技能修改都很容易。缺点:1. 编程的复杂度远高于面向过程,不了解面向对象而立即上手基于它设计程序,极容易出现过度设计的问题。一些扩展性要求低的场景使用面向对象会徒增编程难度,比如管理linux系统的shell脚本就不适合用面向对象去设计,面向过程反而更加适合。2. 无法向面向过程的程序设计流水线式的可以很精准的预测问题的处理流程与结果,面向对象的程序一旦开始就由对象之间的交互解决问题,即便是上帝也无法准确地预测最终结果。于是我们经常看到对战类游戏,新增一个游戏人物,在对战的过程中极容易出现阴霸的技能,一刀砍死3个人,这种情况是无法准确预知的,只有对象之间交互才能准确地知道最终的结果。应用场景:需求经常变化的软件,一般需求的变化都集中在用户层,互联网应用,企业内部软件,游戏等都是面向对象的程序设计大显身手的好地方23 #继承 派生 组合组合与继承都是有效地利用已有类的资源的重要方式。但是二者的概念和使用场景皆不同通过继承的方式新建类B,让B继承A,B会‘遗传’A的所有属性(数据属性和函数属性),实现代码重用当然子类也可以添加自己新的属性或者在自己这里重新定义这些属性(不会影响到父类),需要注意的是,一旦重新定义了自己的属性且与父类重名,那么调用新增的属性时,就以自己为准了。组合指的是,在一个类中以另外一个类的对象作为数据属性,称为类的组合class People:    def __init__(self,name,age,sex):        self.name=name        self.age=age        self.sex=sexclass Course:    def __init__(self,name,period,price):        self.name=name        self.period=period        self.price=price    def tell_info(self):        print('<%s %s %s>' %(self.name,self.period,self.price))class Teacher(People):    def __init__(self,name,age,sex,job_title):        People.__init__(self,name,age,sex)        self.job_title=job_title        self.course=[]        self.students=[]class Student(People):    def __init__(self,name,age,sex):        People.__init__(self,name,age,sex)        self.course=[]egon=Teacher('egon',18,'male','沙河霸道金牌讲师')s1=Student('牛榴弹',18,'female')python=Course('python','3mons',3000.0)linux=Course('python','3mons',3000.0)#为老师egon和学生s1添加课程egon.course.append(python)egon.course.append(linux)s1.course.append(python)#为老师egon添加学生s1egon.students.append(s1)#使用for obj in egon.course:    obj.tell_info()24经典类与新式类1.只有在python2中才分新式类和经典类,python3中统一都是新式类2.在python2中,没有显式的继承object类的类,以及该类的子类,都是经典类3.在python2中,显式地声明继承object的类,以及该类的子类,都是新式类3.在python3中,无论是否继承object,都默认继承object,即python3中所有类均为新式类Python中子类可以同时继承多个父类,如A(B,C,D)如果继承关系为非菱形结构,则会按照先找B这一条分支,然后再找C这一条分支,最后找D这一条分支的顺序直到找到我们想要的属性如果继承关系为菱形结构,那么属性的查找方式有两种,分别是:深度优先和广度优先当类是经典类时,多继承情况下,在要查找属性不存在时,会按照深度优先的方式查找下去当类是新式类时,多继承情况下,在要查找属性不存在时,会按照广度优先的方式查找下去python到底是如何实现继承的,对于你定义的每一个类,python会计算出一个方法解析顺序(MRO)列表,这个MRO列表就是一个简单的所有基类的线性顺序列表 F.mro() #等同于F.__mro__为了实现继承,python会在MRO列表上从左到右开始查找基类,直到找到第一个匹配这个属性的类为止。而这个MRO列表的构造是通过一个C3线性化算法来实现的。我们不去深究这个算法的数学原理,它实际上就是合并所有父类的MRO列表并遵循如下三条准则:1.子类会先于父类被检查2.多个父类会根据它们在列表中的顺序被检查3.如果对下一个类存在两个合法的选择,选择第一个父类25 #@property  特性(伪装)class People:    def __init__(self,name,weight,height):        self.name =name        self.weight =weight        self.height=height    @property    def bmi(self):        return self.weight / (self.height**2)p1 = People('xjj',70,1.78)print(p1.bmi)26 #__str__方法  在对象被打印时,自动触发,应该在该方法内采集与对象self有关的信息,然后拼成字符串返回class People:    def __init__(self,name,sex):        self.name=name        self.sex=sex    def __str__(self):        return '[name:%s sex:%s]' %(self.name,self.sex)p1=People('egon','male')print(p1)27 #多态性(继承) 不同的对象,执行相同的方法名,执行的效果不同(代码不同)多态指的是一类事物有多种形态动物有多种形态:人,狗,猪文件有多种形态:文本文件,可执行文件一 什么是多态动态绑定(在继承的背景下使用时,有时也称为多态性)多态性是指在不考虑实例类型的情况下使用实例在面向对象方法中一般是这样表述多态性:向不同的对象发送同一条消息(!!!obj.func():是调用了obj的方法func,又称为向obj发送了一条消息func),不同的对象在接收时会产生不同的行为(即方法)。也就是说,每个对象可以用自己的方式去响应共同的消息。所谓消息,就是调用函数,不同的行为就是指不同的实现,即执行不同的函数。比如:老师.下课铃响了(),学生.下课铃响了(),老师执行的是下班操作,学生执行的是放学操作,虽然二者消息一样,但是执行的效果不同多态性分为静态多态性和动态多态性  静态多态性:如任何类型都可以用运算符+进行运算  动态多态性:如下peo=People()dog=Dog()pig=Pig()#peo、dog、pig都是动物,只要是动物肯定有talk方法#于是我们可以不用考虑它们三者的具体是什么类型,而直接使用peo.talk()dog.talk()pig.talk()#更进一步,我们可以定义一个统一的接口来使用def func(obj):    obj.talk()二 为什么要用多态性(多态性的好处)python本身就是支持多态性的1.增加了程序的灵活性  以不变应万变,不论对象千变万化,使用者都是同一种形式去调用,如func(animal)2.增加了程序额可扩展性  通过继承animal类创建了一个新的类,使用者无需更改自己的代码,还是用func(animal)去调用   三  鸭子类型  多个完全不相关的类 但是定义时 大家约定俗成用相同的方法名  就是鸭子类型Python崇尚鸭子类型   用于程序组件的松耦合度28 #反射  通过字符串来操作类或者对象的属性1 什么是反射反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问、检测和修改它本身状态或行为的一种能力(自省)。这一概念的提出很快引发了计算机科学领域关于应用反射性的研究。它首先被程序语言的设计领域所采用,并在Lisp和面向对象方面取得了成绩。2 python面向对象中的反射:通过字符串的形式操作对象相关的属性。python中的一切事物都是对象(都可以使用反射)hasattr(object,name)                       #检测是否含有某属性getattr(object, name, default=None)        #获取属性setattr(x, y, v)                           #设置属性delattr(x, y)                              #删除属性3 为什么用反射之反射的好处好处一:实现可插拔机制可以事先把主要的逻辑写好(只定义接口),然后后期再去实现接口的功能好处二:动态导入模块(基于反射当前模块成员)29 30 call  initclass Mymeta(type):    def __init__(self,class_name,class_bases,class_dic):        if not class_name.istitle():            raise TypeError('类名首字母大写')        if class_dic.get('__doc__') is None or len(class_dic.get('__doc__').strip()) == 0:            raise TypeError('必须有注释且不能为空')        super().__init__(class_name,class_bases,class_dic)    def __call__(self, *args, **kwargs):        # print(self,args,kwargs)        obj = self.__new__(self)  #从类对象复制一个模板,里面已经放入了公共的属性        # print(obj.a)               #比如这里输出就是a        self.__init__(obj,*args,**kwargs) #调用People类的init方法初始化        # print(obj.__dict__)        obj.__dict__ = {
'_%s__%s' % (self.__name__, k): v for k, v in obj.__dict__.items()} #初始化完成,在未返回前,修改对象属性 return objclass People(object,metaclass=Mymeta): '''test''' a='a' def __init__(self,name,age): self.name=name self.age=agep1 = People('xjj',18)p1.name = 'egon' #修改不了,只是新加了一个属性print(p1.__dict__)
answer

 

转载于:https://www.cnblogs.com/xujinjin18/p/9278739.html

你可能感兴趣的文章
C#使用Xamarin开发可移植移动应用(2.Xamarin.Forms布局,本篇很长,注意)附源码
查看>>
jenkins搭建
查看>>
C#中使用Split分隔字符串的技巧
查看>>
eclipse的调试方法的简单介绍
查看>>
加固linux
查看>>
IPSP问题
查看>>
HNU 10362 A+B for Input-Output Practice (II)
查看>>
10.17动手动脑
查看>>
WPF中Image显示本地图片
查看>>
Windows Phone 7你不知道的8件事
查看>>
脚本删除文件下的文件
查看>>
实用拜占庭容错算法PBFT
查看>>
java的二叉树树一层层输出,Java构造二叉树、树形结构先序遍历、中序遍历、后序遍历...
查看>>
php仿阿里巴巴,php实现的仿阿里巴巴实现同类产品翻页
查看>>
Node 中异常收集与监控
查看>>
七丶Python字典
查看>>
Excel-基本操作
查看>>
面对问题,如何去分析?(分析套路)
查看>>
Excel-逻辑函数
查看>>
面对问题,如何去分析?(日报问题)
查看>>